TVS产品选型指南

Transient Voltage Suppressors Selection Guide

乔光电子

版权及最终解释权归乔光电子所有

目录

1TVS 工作原理	3
2TVS特点	4
3TVS典型应用	4
4TVS命名规则	5
5TVS电性检测	5
5.1V _{RWM} 截止电压、IR漏电流	5
5.2VBR击穿电压	6
5.3lpp峰值脉冲电流、Vc钳位电压	7
6TVS选型注意事项	8
6.1最高工作电压V _{RWM}	8
6.2TVS功率选型	8
6.3Vc钳位电压	8
6.4IR漏电流	g
6.5结电容	9
6.6 封装形式	g

1、TVS工作原理

TVS(Transient Voltage Suppressors),即瞬态电压抑制器,又称雪崩击穿二极管。它是采用半导体工艺制成的单个PN结或多个PN结集成的器件。TVS有单向与双向之分,单向TVS一般应用于直流供电电路,双向TVS应用于电压交变的电路。如图1所示,应用于直流电路时单向TVS反向并联于电路中,当电路正常工作时,TVS处于截止状态(高阻态),不影响电路正常工作。当电路出现异常过电压并达到TVS(雪崩)击穿电压时,TVS迅速由高电阻状态突变为低电阻状态,泄放由异常过电压导致的瞬时过电流到地,同时把异常过电压钳制在较低的水平,从而保护后级电路免遭异常过电压的损坏。当异常过电压消失后,TVS阻值又恢复为高阻态。

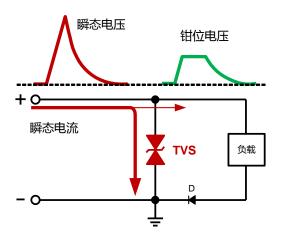


图1 TVS电路保护原理简图

TVS 的伏安特性曲线及相关参数说明如图 2 所示,双向 TVS 伏安特性曲线第一象限与第三象限极性相反,特性相似,如图 3。当 TVS 反向偏置时,TVS 有两种工作模式: 待机(高阻抗)或钳制(相对的低阻抗),如图 2 第三象限。在待机状态下,流过 TVS 的电流称为待机电流(IR)或漏电流,该电流的大小随 TVS 的结温而变化。在 TVS 的伏安特性曲线中,由高阻抗(待机)向低阻抗(钳位)转变是雪崩击穿的开始,当 TVS 完全雪崩击穿时,TVS 会瞬间把高电压转化为流过其体内的大电流并保持 PN 结两端相对较低的钳位电压。

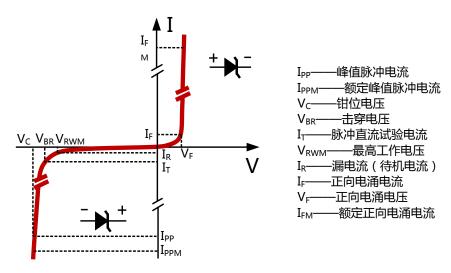
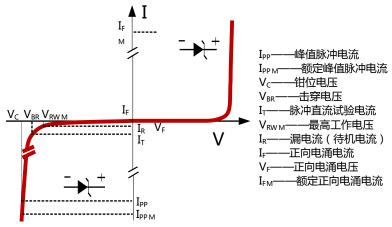
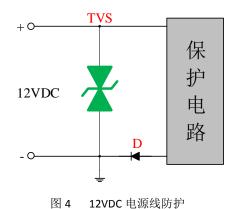


图 2 单向 TVS 伏安特性曲线




图 3 双向 TVS 伏安特性曲线

2 、TVS 特点

- ▶ TVS内部芯片为半导体硅材料,采用半导体工艺制成,具有较高的可靠性。
- ▶ TVS具有较低的动态内阻,钳位电压低。
- ▶ TVS较其他过压保护器件,具有较快的响应速度。
- ▶ TVS电压精度高,击穿电压一般为±5%的偏差,在特殊应用场合,还可以通过工艺改善或参数筛选达到更高的精度。
- ▶ TVS封装多样化,贴片封装有SOD-123、SMA (DO-214AC)、SMB(DO-214AA)、SMC(DO-214AB)、DO-218AB等,插件封装有DO-41、DO-15、DO-201、P-600等。
- ΤVS在10/1000μs波形下瞬态功率可达200W~30000W,甚至更高。在8/20μs波形下瞬态峰值脉冲电流可达3kA、6kA、10kA、16kA、20kA甚至更高。
- ▶ 工作电压范围可从3.3V~600V, 甚至更高。

3、TVS 典型应用

TVS 由于具有响应速度快,钳位电压低,电压精准等优点,因而应用于对保护器件要求较高的场合,如汽车电子、工业控制、照明,通信等行业,如 DC 电源线,RS485 接口,通信电源,I/O 口等。图 4 至图 6 是一些典型应用案例。

AO SMBJ6.0CA IC Chip

图 5 RS485 接口保护

TVS 产品选型指南

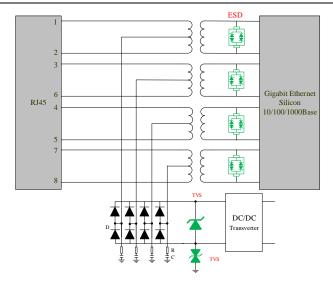
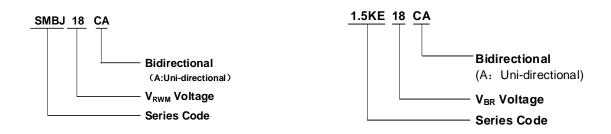



图 6 100M PoE 接口保护

4、TVS 命名规则

5、 TVS 电性参数

表 1 为乔光电子 TVS 规格参数,下面分别针对以下参数简单介绍;

表 1 TVS 产品电性参数

Part Number		Device Marking Code		Reverse Stand-Off Voltage	Breakdown Voltage @I _T	Test Current	Maximum Clamping Voltage@ I _{PP}	Peak Pulse Current	Reverse Leakage @V _{RWM}
Unidirectional	Bidirectional	UNI	BI	V _{RWM} (V)	V _{BR} (V)	I _T (mA)	V _C (V)	I _{PP} (A)	$I_R(\mu A)$
SMBJ5.0A	SMBJ5.0CA	KE	AE	5.0	6.4~7.0	10	9.2	65.2	800
SMBJ6.0A	SMBJ6.0CA	KG	AG	6.0	6.7~7.4	10	10.3	58.3	800

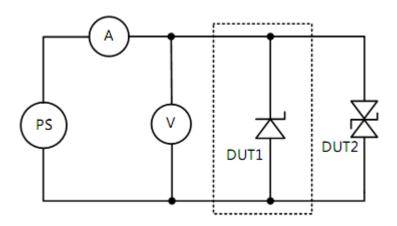
表 1 TVS 电性参数

5.1 VRWM 截止电压, IR 漏电流

VRWM, 截止电压, TVS 的最高工作电压,可连续施加而不引起 TVS 劣化或损坏的最大的直流电压或交流峰值电压。在 VRWM 下, TVS 呈现高阻态,认为是不工作的,即是不导通的。

IR,漏电流,也称待机电流。在规定温度和最高工作电压条件下,流过TVS的最大电流。TVS的漏电流一般是在截止电压下测量,对于某一型号TVS,IR应在规定值范围内。

TVS 产品选型指南



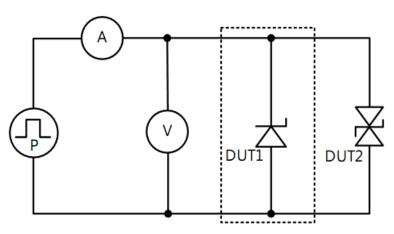
VRWM 和 IR 测试回路如图 7 所示,对 TVS 两端施加电压值为 VRWM,从电流表中读出的电流值即为 TVS 的漏电流 IR,其中虚线框表示单向 TVS 测试回路。如对于我司型号为 SMBJ5. 0A 的 TVS,当加在 TVS 两端的电压为 5VDC 时,流过 TVS 的电流应小于 800 μ A。对于同功率和同电压的 TVS,在 VRWM≤10V 时,双向 TVS 漏电流是单向 TVS 漏电流的 2 倍。

5.2 VBR 击穿电压

击穿电压,指在V-I特性曲线上,在规定的脉冲直流电流IT或接近发生雪崩的电流条件下测得TVS两端的电压。

对于低压 TVS,由于漏电流较大,所以测试电流选取的 IT 较大,如 SMBJ5.0A,测试电流 IT 选取 10mA。VBR 测试电路如图 8 所示,使用脉冲恒流源对 TVS 施加 IT 大小的电流时,读出 TVS 两端的电压则为击穿电压。电流施加时间应不超过 400ms,以免造成 TVS 受热损坏。测量时,VBR 落在 VBR MIN. 和 VBRMAX. 之间视为合格品。

PS-可调直流电压源(如为交流实验,则为交流电压源)


V- 数字电压表(如为交流实验,则为示波器)

A- 直流微安表(如为交流实验,则为交流微安表)

DUT1-单向受试元件

DUT2-双向受试元件

图 7 TVS 截止电压 (VRWM) /漏电流 IR 试验电路

P- 脉冲恒流源

V- 电压表

DUT1- 受试单向器件 DUT2- 受试双向器件

图 8 TVS 击穿电压 (VBR) 测试电路

5.3、 IPP 峰值脉冲电流 /Vc 钳位电压

IPP,峰值脉冲电流,给定脉冲电流波形的峰值。TVS一般选用10/1000µs电流波形(图9)。VC,钳位电压,施加规定波形的峰值脉冲电流IPP时,TVS两端测得的峰值电压。

IPP 及 VC 是衡量 TVS 在电路保护中抵抗浪涌脉冲电流及限制电压能力的参数,这两个参数是相互联系的。对于 TVS 在防雷保护电路中的钳位特性,可以参考 VC 这个参数。对于相同型号 TVS,在相同 IPP 下的 VC 越小,说明 TVS 的钳位特性越好。TVS 的耐脉冲电流冲击能力可以参考 IPP,同型号的 TVS,IPP 越大,耐脉冲电流冲击能力越强。

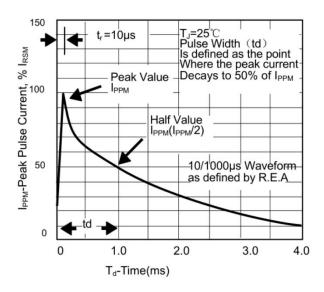
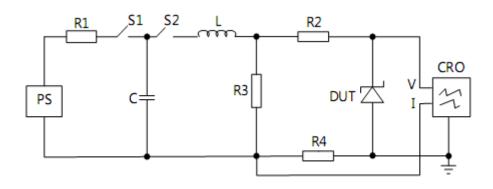



图 9 10/1000uS 电流波形

下图(图 10)为 TVS 峰值脉冲电流(IPP),钳位电压(Vc)测量试验回路示意图,测量时应考虑到 TVS 的散热问题,两次测试时间间隔不能太短,以免对 TVS 造成损坏。

PS-DC 充电电源;

S1-充电开关

S2-放电开关

R1-充电电阻

R2-调波限流电阻 DUT- 试品 (TVS) R3-调波电阻

R4-电流传感电阻或可采用适当额定值的电流 互感器探头

C-储能电容器

L-调波电感

CRO-用于观察电流和电压的示波器

注: 所示回路仅为示意图, 应采用大电流及高频试验的测量技术

图 10 TVS 钳位电压 (VC), 峰值脉冲电流 (IPP) 试验回路

以上对于 TVS 的测量,图中所示电路为电路的基本原理,目前市面上有多种 TVS 电性检测仪器,如晶体管图示仪,TVS 检测仪等,浪涌发生器、TVS 逆向功率测试仪等。

6、TVS 选型注意事项

6.1 最高工作电压 VRWM

在电路正常工作情况下,TVS 应该是不工作的,即处于截止状态,所以 TVS 的截止电压应大于被保护电路的最高工作电压。这样才能保证 TVS 在电路正常工作下不会影响电路工作。但是 TVS 的工作电压高低也决定了 TVS 钳位电压的高低,在截止电压大于线路正常工作电压的情况下, TVS 工作电压也不能选取的过高,如果太高,钳位电压也会较高,所以在选择 VRWM 时,要综合考虑被保护电路的工作电压及后级电路的承受能力。

6.2 TVS 功率选型

产品的额定瞬态功率应大于电路中可能出现的最大瞬态浪涌功率,具体可参照如下计算方法。 TVS的额定功率记为PPPM,则PPPM的功率可估算为:

$$P_{PPM}=V_C\times I_{PP}$$

其中, Vc为TVS的钳位电压, IPP为TVS在10/1000µ s波形的峰值脉冲电流。

对于不同功率等级的TVS,相同电压规格的TVS其Vc值是一样的,只是IPP不同。故PPPM与IPPM成正比,IPPM越大,PPPM也越大。

对于某一电路,有对应的测试要求,设实际电路中的最大测试电流为I actual,则Iactual可估算为:

$$I_{actual} = \frac{U_{actual}}{R_i}$$

其中U actual为测试电压, Ri为测试内阻。

TVS要通过测试,故实际电路中要求10/1000µ s波形下TVS的最小功率Pactual为:

$$P_{actual} = V_c \times I_{actual} \times \Delta \frac{di}{dt} = V_C \times \frac{U_{actual}}{R} \times \Delta \frac{di}{dt}$$

其中 $\Delta \frac{di}{dt}$ 为波形转换系数,如实际测试波形为其他波形,如 $8/20\mu$ s波形,建议 $\Delta \frac{di}{dt}$ 取

$$\frac{1}{3-5}$$
 @ $8/20us$ 或 $\frac{1}{1.5-2}$ @ $5/320us$; $\Delta \frac{di}{dt}$ 与TVS的材质有关,详细可咨询我司技术人员。

实际选型中,TVS应留有一定的裕量,TVS的功率PPPM选择应遵循PPPM≥Pactual;

6.3 Vc 钳位电压

TVS 钳位电压应小于后级被保护电路最大可承受的瞬态安全电压,大多数 TVS 的 Vc与 VBR及 IPP 都成正比。对于同一功率等级的 TVS,其击穿电压越高 Vc也越高。

6.4 IR漏电流

在一些低功耗电路或高精度采集电路中,IR 过大可能导致电路功耗过大或信号的采集精度超标。因低压($V_{RWM} < 10V$)TVS 的 IR 较大,如果后级电路耐受能力较强的话,尽量选择 10V 或以上的 TVS;如果后级电路耐受能力不足,需要选择小 IR 且低电压的 TVS,我司也可以提供这类产品。

6.5 结电容

TVS 的结电容一般在几十皮法至几十纳法。对于同一功率等级的 TVS, 其电压越低, 电容值越大。在一些通信线路中, 要注意 TVS 的结电容, 不能影响电路正常工作。

6.6 封装形式

TVS 的功率从封装形式上也可以体现,封装体积越小,其功率一般也越小,因为 TVS 的芯片面积直接决定了 TVS 的功率等级。电路工程师可根据电路设计及测试要求选择合适封装的 TVS 器件。